Powers of large random unitary matrices and Toeplitz determinants

نویسنده

  • Maurice Duits
چکیده

We study the limiting behavior of TrUk(n), where U is a n × n random unitary matrix and k(n) is natural number that may vary with n in an arbitrary way. Our analysis is based on the connection with Toeplitz determinants. The central observation of this paper is a strong Szegö limit theorem for Toeplitz determinants associated to symbols depending on n in a particular way. As a consequence to this result, we find that for each fixed m ∈ N, the random variables TrUkj(n)/ √ min(kj(n), n), j = 1, . . . ,m, converge to independent standard complex normals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secular determinants of random unitary matrices

We consider the characteristic polynomials of random unitary matrices U drawn from various circular ensembles. In particular, the statistics of the coefficients of these polynomials are studied. The variances of these “secular coefficients” are given explicitly for arbitrary dimension and continued analytically to arbitrary values of the level repulsion exponent β. The latter secular coefficien...

متن کامل

Properties of matrices with numerical ranges in a sector

Let $(A)$ be a complex $(ntimes n)$ matrix and assume that the numerical range of $(A)$ lies in the set of a sector of half angle $(alpha)$ denoted by $(S_{alpha})$. We prove the numerical ranges of the conjugate, inverse and Schur complement of any order of $(A)$ are in the same $(S_{alpha})$.The eigenvalues of some kinds of matrix product and numerical ranges of hadmard product, star-congruen...

متن کامل

Random Words, Toeplitz Determinants, and Integrable Systems I

It is proved that the limiting distribution of the length of the longest weakly increasing subsequence in an inhomogeneous random word is related to the distribution function for the eigenvalues of a certain direct sum of Gaussian unitary ensembles subject to an overall constraint that the eigenvalues lie in a hyperplane.

متن کامل

Positive Integer Powers of the Tridiagonal Toeplitz Matrices

In this paper we present an explicit expression for the arbitrary positive integer powers of the tridiagonal Toeplitz matrices.

متن کامل

An FPT algorithm with a modularized structure for computing two-dimensional discrete Fourier transforms

With the change of variables U = U*q, substitution into (21) results in UCU*q = Ud. Consequently, the solution vector U of (20) can be obtained from the solution vector q of (22) or q can be obtained from U. Note that if a system of real equations is Toeplitz-plus-Hankel (T + H) , where T i s symmetric Toeplitz and H i s skew-centrosym-metric Hankel, then the equations may be transformed into H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007